SUBJECT:	
BOTANY (PG)	
PROGRAMME	The M.Sc. Botany programme is designed to equip students with essential
OUTCOMES	knowledge and technical skills to study plants in a holistic manner. Upon
BOTANY (PG)	completing M.Sc. in Botany, graduates will possess advanced knowledge of
	plant biology, including anatomy, physiology, taxonomy, and ecology. They
	will be adept in designing and conducting research, utilizing modern techniques
	and methodologies. Graduates will master plant identification, data analysis,
	and apply their expertise to address agricultural, conservation, and
	environmental challenges. They will communicate effectively through
	scientific writing and presentations, and address ethical issues in botanical
	research. Prepared for careers in research, education, agriculture, and
	conservation, or for further doctoral studies, they will integrate their knowledge
	to contribute to the field of botany and environmental management.
	PO1: Develop an aptitude towards science and nature.
	PO2:Equip the students with the basic skills in identifying and labeling
	different plants.
	PO3:To sensitize the students towards the need for keeping the environment
	clean and conserve our natural resources.
	PO4:Students would also become aware about the social and environmental
	significance of plants and their relevance to the national •
	PO5:To develop an aptitude towards science and nature.
	PO6:To equip the students with the basic skills in identifying and labeling
	different plants.
	PO7:To impart quality education in the field of Botany enabling our students
	to confidently face the job market.
	PO8:Environment and Sustainability: Understand the issues of environmental
	contexts and sustainable development.
PROGRAMME	After completing the programme the learner will able to:
SPECIFIC OUTCOM	PSO1:- Describe different specializations of Botany such as systematics,
	evolution, ecology, developmental biology, physiology, biochemistry,
	plant interactions with microbes and insects, morphology, anatomy,

	reproduction, genetics and molecular biology of various life-forms.	
	PSO2: Apply various analytical techniques of plant and transgenic technologies	
	basic and applied research in plants.	
	PSO3: Identify various life forms of plants, design and execute experiments	
	related to basic studies on evolution, ecology, developmental biology,	
	physiology, biochemistry, plant interactions with microbes and insects,	
	morphology, anatomy, reproduction, genetics, microbiology, molecular	
	biology, recombinant DNA technology, proteomics and transgenic	
	technology. Students are also familiarized with the use of bioinformatics	
	tools and databases and in the application of statistics to biological data.	
	PSO4: Execute short research projects incorporating various tools and techniques	
	plant Sciences.	
COURSE OUTCOME		
SEMESTER I		
BOT-411	After completion of the course the learner will be able to	
Microbial Diversity	CO1:Describe the vast diversity of microorganisms, including bacteria,	
	archaea, fungi, viruses, and protists along with classification and	
	phylogenetic relationships among microorganisms.	
	CO2:State ecological roles and interactions of microbes in various	
	environments	
	CO3:Apply modern techniques in microbial isolation, cultivation, and	
	identification	
	CO4:Apply knowledge of microbial processes to biotechnology, medicine,	
	agriculture, and environmental science.	
BOT-412	CO1:Classify cryptogams (algae, fungi, bryophytes, and pteridophytes) and	
Diversity of	gymnosperms.	
Cryptogams and	CO2: Explain structural features, adaptations ecological roles, life cycles, and	
Gymnosperm	environmental adaptation of cryptogams and gymnosperms.	
	CO3:Explain importance of conserving cryptogam and gymnosperm diversity.	
	CO4: Applycryptogam and gymnosperm diversity. in various industries,	
	including agriculture, medicine, and biotechnology.	
BOT-413 Biochemist	CO1:Explain the structure, function, and interactions of biological	

	macromolecules such as proteins, nucleic acids, lipids, and carbohydrates.
	CO2: Describe pathways and regulation of cellular metabolism, including anabolic
	and catabolic processes.
	CO3: Solve complex biochemical problems.
BOT-414	CO1:Describe a wide range of analytical techniques, including spectroscopy,
Analytical	chromatography, mass spectrometry, electro analytical methods, and
Techniques	thermal analysis.
	CO2:Describe underlying principles and theoretical foundations of
	instrumental analysis. Use analytical instruments in professional life.
	CO3: Make quantitative and qualitative analysis of samples accurately.
BOT-414	CO: Develop different project work in different natural diversity.
PRACTICAL	
SEMESTER-II	
BOT-421	CO1: Explain the diversity and classification of angiosperms.
Systematics of	
Angiosperm	CO2:State characteristics of major families, genera, and species of flowering
	plants.
	CO3:Explain principles and methods used in plant systematics and taxonomy.
	CO4:Use historical and modern approaches to classifying plants.
	CO5: Explain the key morphological and anatomical features used in
	angiosperm classification.
BOT-422	CO1: Explain fundamental physiological processes in plants, including
Plant Physiology	photosynthesis, respiration, transpiration, nutrient uptake, and hormone
and Metabolism	regulation.
	CO2:Describe primary and secondary metabolic pathways in plants, including
	carbon, nitrogen, and sulphur metabolism.
	CO3:Explain biosynthesis, signalling, and functions of plant hormones such as
	auxins, gibberellins, cytokinins, ethylene, and abscisic acid.
	CO4:Describe the physiological and molecular responses of plants to various
	biotic (pathogen and insect) and abiotic stresses such as drought, salinity,
	temperature extremes, and nutrient deficiencies.
BOT-423	CO1:Explain cell structure, function, and molecular mechanisms, including

Cell and Molecular	gene expression and regulation.
Biology	CO2:Applyvarious concepts from different biologicaldisciplines for a
	comprehensive understanding of cellular and molecular processes.
	CO3: Apply knowledge and understanding to innovate and solve complex
	biological problems, contributing to advancements in biotechnology and
	medicine.
BOT-424	CO1:Explain ecological principles, including ecosystem dynamics, species
Ecology and	interactions, and biodiversity.
Biostatistics	CO2:Apply advanced bio statistical methods to analyze ecological data and
	interpret results.
	CO3: Address ethical issues in ecological research and data analysis.
	CO4:Apply knowledge of ecology and biostatistics to address complex
	environmental issues.
BOT-425	CO: Develop the practical field work in the field of natural science.
Semester III	
BOT-511	CO1: State embryonic development, including fertilization, embryo formation,
Plant Embryology	and seed development.
and Anatomy	CO2: Identify and describe various plant structure and their developmental
	processes.
	CO3: Explain plant anatomical structures and functions, from cellular to organ
	levels.
	CO4:Design and conduct experiments to study plant embryology and anatomy.
BOT-512 Genetics,	CO1:Describe principles of genetics, including gene function, inheritance
Plant Breeding and	patterns, and genetic variation.
Evolution	CO2:Explain mechanisms of evolution and influence of evolution plant
	diversity and adaptation.
	CO3:Apply knowledge to agricultural and conservation challenges.
	CO4:Address ethical issues in genetic research and breeding.
BOT-513	CO1:Identify and understand plant diseases, including their causes (pathogens)
Plant Pathology	and effects on plants.
	CO2: Apply strategies for managing and controlling plant diseases, including
	cultural, chemical, and biological methods.

	CO3: Explain the life cycles and epidemiology of plant pathogens.
BOT-514	CO1:State types and importance of natural resources, including water, soil,
Natural Resource,	minerals, and biodiversity.
Conservation and	CO2:Explain principles and practices of conservation, including sustainable
Utilization	management and protection strategies.
	CO3:Make sustainable utilization of natural resources to balance ecological,
	economic, and social needs.
	CO4:Plan and implement natural resource management projects and policies
	successfully.
	CO5:Apply knowledge to real-world challenges in conservation, policy-
	making, and sustainable development
BOT-415	CO: Engage in different field of natural diversities activity.
SEMESTER-IV	
BOT-521 Advance	CO1:Explain techniques required for plant related research
Plant	
Biotechnology	CO2: Apply the techniques to evaluate research findings and problem solving
	CO3:Describe theories, models, laws, principles and concepts of biotechnology
	and plant sciences
	CO4: Think and act scientifically
BOT-522	CO1:Explain principles of biotechnology and their application to
Environmental	environmental management and protection.
Biotechnology	CO2: Use biological organisms to clean up environmental pollutants and
	manage waste.
	CO3: Apply biotechnology to promote sustainable practices in agriculture,
	industry, and conservation.
	CO4:Conduct experiments to evaluate and develop biotechnological
	applications for environmental issues.
BOT-523 E-B	CO1:Understand the molecular mechanisms of cellular responses to various
Molecular Stress	stressors, including heat, oxidative, and chemical stress.
Biology	CO2:Identify and describe key signaling pathways and molecular players
	involved in stress responses.
	CO3: Learn about mechanisms of adaptation and resilience in cells and
	organisms under stress.

	CO4:Apply knowledge of stress mechanisms to engineer or select organisms
	with enhanced stress tolerance for agriculture or biotechnology
BOT-524	CO1:Describe principles and practices of waste management, including waste
Environment and	minimization, recycling, and disposal.
Waste	CO2: Assess the environmental impacts of different types of waste and the
Management	effectiveness of various management strategies.
C	CO3: Explain environmental regulations and policies related to waste
	management and hazardous materials.
	CO4: Address ethical issues related to waste management and environmental
	protection.
BOT- 525 Project	CO1: Write research papers, reports, and grant proposals.
	CO2:Develop oral communication skills through presentations and discussions
	of scientific topics.
	CO3: Enhance research skills through designing, conducting, and analyzing
	experiments.
	CO4:Formulate hypotheses, design experiments, and interpret data.
	CO5:Develop problem-solving abilities to address analytical challenges.